
DTI FI'LE COpy

0
a) PROBLEM-SOLVING TRANSFER AMONG

PROGRAMMING LANGUAGES

LOl
NTechnical Report AIP - 134N

Quanfeng Wu and John R. Anderson
Department of Psychology

Carnegie Mellon University

The Artificial Intelligence
and Psychology Project

DTIC,
ELECTE
AUG23 i ODepartments of 8 I'*

Computer Science and Psychology
Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh

'""l "ro"d for ptibl"i releaiM : di rikitiot" unlin ifd. 9 0 0 P, 0 2



PROBLEM-SOLVING TRANSFER AMONG

PROGRAMMING LANGUAGES

Technical Repor AIP - 134

Quanfeng Wu and John R. Anderson
Department of Psychology

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

June 4, 1990

This rcscarch was partially supported by the Computer Science Division, Office
of Naval Research, under contract number N00014-86-K-0678. Reproduction in
whole or in part is permitted for any purpose of the United States Government.
Approved for public release; distribution unlimited.

J 2 1990 .

f.: - .*
, . .



REPORT DOCUMENTATION PAGE

l~REOR CTry CLASIFICATION lb RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AIJYHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFlCATIONIjDOWNGRAD4NG SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S 5, MONITORING ORGANIZATION REPORT NUMBER(S)

AIP - 134

6. NAME Of PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION

Carnegie Mellon University (If applicoble) Computer Sciences Division
I Office of Naval Research (Code 1133)

6c. ADDRESS (City, State. and! ZOP Cod) 7b. ADDRESS (City Staff, and ZIP Co&e)

Department of Psychology 800 N. Quincy Street
Pittsurgh PA 5213Arlington, VA 22217-5000

S.. NAME OF FUNOlIGI/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Same as Monitoring Organizatio I00486K07
St. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBER D40005ub201/7-4-86

PROGRAM PROJECT ITASK I WVORK UNIT
ELEMENT NO NO INO IACCESSION NO

__________________________ I_ N/A N/A N/A
11 TITLE (Anclude Security Classifcation)

Problem-solving transfer among programming languages

112 PERSONAL AUTHOR(S) Quanfeng Wu and John R. Anderson

i3. TYPE OF REPORT 13b TIME COv., RED 14DT F REPORT (Year, Month, Day) 5, PAGE COUNT
Technical TF1ROM jjL 1 TO 1~4JUNE1'90 41

16 SUPPLEMENTARY NOTATION

Submitted to Human-Computer Interaction

17 CSA21CDE1 18 SuBjECT TERMS (Continue on r*eont if necessary and identify by block number)
FIELD GROUP SUB6-GROUP knowledge transfer human-computer interaction

programming languages

19 ABSTRACT (Continue on reverse if necessary and identity by block number)

SEE REVERSE SIDE

20 PISTRISUTION /AVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
OUNCLASS IFIEDAIJNLIMITED (2 SAME AS RPT C OTIC USERS

I?2a NAME 0' RESPONSg8E iN~oViDwL iab rELEPHONE (Include Are Code)Z22C. OFFICE SYMBOL
Dr. Alan L. Meyrowitz (202) 696-4302 1 N00014

DO FORM 1473, u mA R 83 APR eition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editionS are obsolete.

Unclassified



ABSTRACT

This study investigated knowledge transfer among three programming languages --

namely, LISP, PROLOG, and PASCAL. Three experiments were conducted: the first two on

transfer between LISP and PROLOG, while the third on transfer between LISP and

PASCAL. The results from all the experiments showed evidence of positive tranz!er; the

transfer was positive in terms of time savings from programming in one language to that in

another for the same problem. Furthermore, it was found that transfer in programming was

largely localized in writing the first drafts of programs. Sometimes this transfer was

manifested even though differert algorithms were used in programming in different

languages for the same problem. To account for the results on transfer acro~s

programming languages, a three-level transfer -- namely, transfer at the syntactic,

algorithmic, and problem levels -- theory was proposed in this paper.

•==..,b, =.= I~mam '=ab'= mmm mm m =m /



Problem-solving Transfer among Programming

Languages

Quanfeng Wu and John R. Anderson

Department of Psychology

Carnegie Mellon University

Pittsburgh, PA 15213 A'.... ?or

June 4, 1990

For submission to: Human-Computer Interaction

cJ '

V ',



Problem-solving Transfer among Programming

Languages

Quanfeng Wu and John R. Anderson

Carnegie Mellon University

ABSTRACT

This study investigated knowledge transfer among three programming languages --

namely, LISP, PROLOG, aiid PASCAL.. Three experiments were conducted: the first two on

transfer between LISP and PROLOG, while the third on tr.,nsfer between LISP and

PASCAL. The results from all the experiments showed evidence of positive transfer; the

transfer was positive in terms of time savings from programming in one language to that in

another for the same problem. Furthermore, it was found that transfer in programming was

largely localized in writing the first drafts of programs. Sometimes this transfer was

manifested even though different algorithms were used in programming in different

languages for the same problem. To account for the results on transfer across

programming languages, a three-level transfer -- namely, transfer at the syntactic,

algorithmic, and problem levels -- theory was proposed in this paper.

Author's present address: Quanfeng Wu and John R. Anderson, Department of Psychology,

Carnegie Mellon University, PA 15213.

Transfer among languages 2



CONTENTS

1. INTRODUCTION

2. A COMPARISON OF THE THREE LANGUAGES

2.1. A Comparison of LISP, PROLOG, and PASCAL

2.2. Two Examples of F,'ogramming Problems

3. EXPERIMENT 1: TRANSFER BETWEEN PROGRAMMING IN LISP AND IN

PROLOG

3.1. Design

3.2. Results

3-3. Discussion

4. EXPERIMENT 2: TRANSFER BETWEEN PROGRAMMING IN LISP AND IN

PROLOG - A FURTHER STUDY

4.1. Design

4.2. Results

4.3. Discussion

5. EXPERIMENT 3: TRANSFER BETWEEN PROGRAMMING IN LISP AND IN

PASCAL

5.1. Design

5.2. Results

6. GENERAL DISCUSSION

6.1. Three Levels of Transfer in Programming

6.2. Declarative versus Procedural Transfer

7. SUMMARY

REFERENCES

Transfer among languages 3

h 
- =, b



1. INTRODUCTION

Most people have the experience that if they write a program in one language then it

will be much easier to write the program in a second language. This paper will

demonstrate the accuracy of that experience and explore the basis for this transfer.

Theoretically, this is an interesting phenomenon because it reflects on the mental

representation of a computer program. Since the codes in the two languages may be

completely different, then what must be transferring is the understanding of the program.

But what is really meant by "the understanding of the program*? In this paper we will offer

some proposals as to what is being transferred.

This theoretical question is o, practical significant as well. Not only is it the case in the

real world that we have to convert programs from one language to another, but we also

have to transfer skill in programming generally from one language we learn to a later

language. It is often thought that when someone learns how to program one is learning

problem solving skills which are more general than programming in any particular

language (e.g., Mandinach & Linn, 1987). This again raises the question of the nature of

the knowledge representation that is involved. Perhaps if we knew that was in common

between two languages we would be in a better position to teach for transfer. This is in fact

the issue that led us to this research project. We are also building a computer tutoring

system to teach multiple programming languages with the goal that there be substantial

transfer among the languages (Anderson, Corbett, Finchman, Hoffman, & Pelletier, in

preparation). We felt we needed to know better what could be transferred in order to

pursue this goal.

There are two kinds of transfer possible among programming languages. One is

transfer from learning one language to learning another. This type of transfer can be

called learning transfer; it is the goal in our tutoring work. The transfer studied in Scholtz &

Transfer among languages 4



Wiedenbeck (1989) is also of this type; they studied transfer from knowing PASCAL and C

to learning a new language ICON. The other kind of transfer is what we will study here.

This kind of transfer may be called problem solving transfer;' it involves people who

already know both languages and have to translate a solution frnm one language to the

other. It is our belief that both types of transfer depend on commonalities in the

representation of the problem solution; however, other relationships are also logically

possible. As we only explore the second kind of transfer in this paper we will not be able

to establish anything definite about this issue of whether the two types of transfer both

depend on the same kinds of commonalities in program representation.

There is a long history of research on transfer (e.g., Thorndike & Woodworth, 1901;

Kotovsky & Fallside, 1988; Singley & Anderson,1 985, 1988, 1989). Particularly relevant to

the present study is Katz (1988) which demonstrated substantial transfer between

PASCAL and LISP programming. In the present study, three experiments were conducted

- the first two on transfer between LISP and PROLOG and the last on transfer between

LISP and PASCAL. Basically, the first experiment demonstrated the exist6nce of transfer

between writing LISP and writing PROLOG programs; the second attempted a detailed

analysis of the locus of this transfer; while the third was an extension of the second

experiment to transfer between LISP and PASCAL. The last experiment also replicated

some of Katz's results 'n transfer between these two languages.

The rest of the paper is structured as follows: In the next section a brief comparison of

the three programming languages involved in this study will be presented; this is purported

to demonstrate that there are indeed commonalities shared by them. Then the three

experiments will be reported and discussed; also, Katz's results will be contrasted with

ours in the third experiment. Finally, some further discussions on transfer among

'Generally, analogical problem solving is also such a kind of transfer; namely, transfer

among isomorphic problems. For examples, Simon & Hayes (1976), Smith (1986), and
Kotovsky & Fallside (1988) called it transfer; while keane (1988) called it analogical problem
solving.

Transfer among languages 5



programming languages will be presented; specifically, a three-level theory of transfer will

be proposed to account for the results from the experiments.

2. A COMPARISON OF THE THREE LANGUAGES

As stated earlier, it is our belief that commonalities in knowledge representation

constitute the basis for transfer. Therefore, here we will present a brief comparison of LISP,

PROLOG, and PASCAL to illustrate some commonalities shared by them. This will supply

a basis for understanding why transfer across them exists at all. Moreover. two examples

of problems will be shown to further illustrate the similarities and differences among the

three languages.

2.1. A Comparison of LISP, PROLOG, and PASCAL

Generally speaking, PASCAL, LISP, and PROLOG are three very different

programming languages; they fall into three different categrics of programming

languages -- namely, procedural, functional, and logical languages (Figure 1). However,

there are also a number of commonalities among them. More specifically, we can take a

continuum view -- that is, viewing programming languages as constituting a continuum

from purely prescriptive languages to purely descriptive languages. Taken that view,

PASCAL, LISP, and PROLOG are seen as occupying overlapping ranges along the

continuum with LISP standing in the middle. Following this view, it is also plausible that

there are more commonalities between PASCAL and LISP and between LISP and

PROLOG than between PASCAL and PROLOG. However, as there is neither purely

prescriptive language nor purely descriptive language, even between PASCAL and

PROLOG there are still a good number of commonalities. As the present study was only

concerned with transfer oetween LiSP and PROLOG and between LISP and PASCAL, we

Transfer among languages 6



will only furth. - dxplicate some commonalities and differences of these two pairs.

Insert Figure 1 about here

An outstanding difference between LISP and PROLOG is their control-flows. LISP is

mainly a prescriptive language while PROLOG is more towards to descriptive. The control-

flow of a LISP program is transparent seen from the static organization of the code; but this

is not the case for PROLOG. The control-flow of a PROLOG program is embedded in the

unification procedure, or in other words, the matching and backtracking mechanism, of the

language implementation. However, in LISP programming recursion is usually a major

form of control-flow; correspondingly, in PROLOG the mechanism of matching and

backtracking also entails that programs are actually executed in a recursive way. Thus,

recursiveness turns out to be an important commonality between LISP and PROLOG. As

to data structures and facilities operating on them, LISP and PROLOG also have a great

deal of commonalities. In both languages, the primary constructive data structure is the

list. Although PROLOG offers far fewer built-in operators for list processing than LISP

does, the basic operations facilitated by bother languages have strikingly

correspondences. Another prominent commonality between LISP and PROLOG is their

elementary constituents -- namely, the function in LISP and the predicate in PROLOG.

Mathematically, there is a correspondence between the two; however, novice PROLOG

programmers may also be very confused with the notion of predicate in programming.

A major commonality shared by LISP and PASCAL is their control-flows. That is,

programs written in these two languages are executed sequentially according to the static

order of their codes and can be organized hierarchically in that a procedure/function (in

PASCAL) or a function (in LISP) can call itself and/or other procedures/functions (in

Transfer among languages 7



PASCAL ) or functions (in LISP). However, usually, there is also a big difference between

the emphases put on the repetition structures facilitated by these two languages. In

general, there are two types of repetition control-flows -- namely, iteration and recursion.

Although both iteration and recursion can be implemented in both languages, iteration is

usually emphasized in PASCAL whereas recursion is usually stressed in LISP. To most

programmers, this difference is simply incurred by the instructional materials which

introduce PASCAL and LISP. However, this difference is also associated the compiling

mechanisms normally used for implementing the two languages. That is, generally,

recursion is less efficient in PASCAL than in LISP. Some striking differences existing

between PASCAL and LISP are their facilities for manipulating data structures. In

PASCAL, the basic types of constructive data structures are sets, arrays, records, and files

of records. However, in constructing any complex data structures the base type of

structures usually have to be the same. While in LISP, the primary type of constructive data

structures is the list; however, this type of data structures is very powerful and versatile in

constructing any complex data structures.

2.2. Two Examples of Programming Problems

Two examples of programming problems which were actually used as testing

materials in the experiments are here chosen to further illustrate commonalities and

differences among the three languages. The first problem is to evaluate the Fibonacci

function; the problem and some modal programs are shown in Figure 2. Generally, there

are two kinds of solutions to the problem - that is, iterative and recursive solutions. Both

solutions can be implemented in the three languages, though generally it is more difficult

to write the iterative solution than the rerursive solution, especially in PROLOG. 2

Nevertheless, to a great extent, this example shows that there may be numerous

'However, the iterative solution is more efficient for execution than the recursive one. The

computational complexity of the iterative algorithm is only linear: Citeration = O(n); whereas,

the complexity of the recursive algorithm is exponential: Crecursion = 0 (5 n/2).

Transfer among languages 8



commonalities among the programs written in the three languages for the same problem.

Inset Figure 2 about here

The second problem is to construct a simple database as to contain entries

representing books and then to search the database to count the books by a given author.

The problem and some modal programs are shown 1n Figure 3. Contrary to the previous

example, here we see that the programs written in the three languages for the same

problem may appear to be quite different from one another. That is, each of the

implementations can utilize the specific facilities provided by the language and conlorm to

the styles of programming in that language. However, although these programs are very

different in appearance, there still may be some transfer in the understanding phase of

programming for the problem.

Insert Figure 3 about here

3. EXPERIMENT 1: TRANSFER BETWEEN LISP AND PROLOG

Basically, this experiment was to demonstrate the existence of transfer between

programming in LISP and in PROLOG. As we were only investigating problem solving

transfer between programming in the these languages, our subjects knew both LISP and

PROLOG beforehand. Also, here transfer was studied bidirectionally; that is, either from

LISP to PROLOG or from PROLOG to LISP.

3.1. Method

Transfer among languages 9



Subjects. The six subjects involved this experiment were from the CMU (Carnegie

Mellon University) community; among them 1 undergraduate, 2 graduate students, and 3

research assistants. They were reimbursed for participating in the experiment. From the

information taken from Questionnaire, the subject's mean GRE/SAT scores were 750; the

mean self-ratings of LISP skill was 3.83, while that for PROLOG skill was only 2.50. Thus,

in average, the subjects were relatively more proficient in LISP than in PROLOG.

Design. Figure 4 shows the design of the experiment. The 6 subjects were

partitioned into two groups. There were four sessions of the experiment; in each session,

the subjects were asked to solve one problem. For each problem, the subjects had to write

two programs, one in LISP and the other in PROLOG. The order of programming in LISP

and PROLOG was alternated from one problem to the next and switched between the two

groups, as shown in the figure. This experimental design is a mixture of the within-subject

and between-subject designs; one advantage of this design is that it would allow us to

analyze the transfer bidirectionally.

Insert Figure 4 About Here

Materials. The four problems used in the experiment were Fibonacci Function,

Powerset, Simple Database Searching, and Simple Expression Parsing; among them, two

were already shown in Figure 2 & 3. 3

Procedure. Before the experiment actually begun, the subjects were requested to fill

out a questionnaire form. The relevant information gathered from the questionnaire was

SAT/GRE math scores and self-ratings of their proficiencies in various programming

:'All the problems and modal solutions to them can be obtained by writing to the authors.

Transfer among languages 10



languages.

The actual procedure of the experiment is shown in Figure 5. The subjects did

programming on the ANDREW system, a campus network at CMU. Two windows were

created: an editing window in which programs were typed in and modified and a

debugging window in which LISP and PROLOG programs were debugged and tested. For

each problem, the subject went through the cycle of editing, debugging, if errors found

then editing and debugging again, until the programs worked correctly. Various drafts of

the program under writing were saved into different files. The versions of the languages

actually used in the experiment were COMMONLISP and CPROLOG; the editor was

EMACS.

Insert Figure 5 about here

Throughout the whole experimental sessions, the experimenter was with the subjects

and helped them as necessary with the syntax of the programming languages and the

computer system. Test cases for the problems were stated on the problem statement

sheets, but the final correctness of the programs was determined by the experimenter.

3.2. Results

Two kinds of quantitative measures were used here for analyzing the results of the

experiment: the time measures and the numbers of program drafts produced by subjects.

For the time measures, we only collected the total problem solving time and the first draft

time in this experiment. The first draft time included the time spent on thinking, typing, and

debugging; so was the total problem solving time. The difference between the total time

and the first-draft time is the rest-draft time - namely, the time spending on revisions of the

Transfer among languages 11



initial draft of problem; this rest-draft time was also used for data analysis. Furthermore,

we calculated the mean per-draft time for the subsequent drafts; that is,

Per-draft time = Rest-draft time / (No. of drafts - 1).

In other words, this time measure was used to gauge the time spent on each rest draft in

average.

The data for the mean total problem solving time are shown in Figure 6; the data

averaged across the subjects within one group for the four separate problems are in the

graphical form and the data averaged across the two groups and the four problems are in

the tabular form. From the graph we can see that there were time savings manifested from

solving a problem in one language to solving it in the other language, a kind of positive

transfer in terms of cognitive expenditure. The only exception was the first problem for

Group 1; there was more time spent on the second PROLOG program than the initial LISP

program (one factor for this result is that one in this group had a relatively weaker skill in

PROLOG). A three-way transfer X language X problem (transfer: first/second program;

language: LISP/PROLOG; problem: 1 to 4; that is, 2 X 2 X 4) pattern ANOVA was used to

test the statistical significance of the data. Since each subject only realized half of the

conditions in this design, for purposes of statistical convenience we treated each pair of

subjects as a macro subject; the subjects in the two groups were paired according to their

programming skills as measured by their total problem solving times. The results revealed

significant main effect due to transfer: F(1, 2) = 367.11, p < 0.01. As can be seen, despite

the small numbers of degrees of freedom, the effects were typically highly significant.

Insert Figure 6 About Here

Figure 7 shows the data for the mean first-draft time. Here again, the data averaged

across the subjects within one group for individual problems are shown in graphical form

Transfer among languages 12



whereas the data averaged across both two groups and four problems are shown in the

tabular form. The data pattern shown in the graph was consistent with the transfer pattern

we would expect; this indicated a substantial portion of transfer was manifested on first

drafts. A second three-way ANOVA was used to analyze these data of the first-draft time;

the results indicated significant main effect due to transfer: F(1, 2) = 230.69, p > 0.01. As

mentioned above, we also calculated the rest-draft time; Figure 8 presents the results of

this time measure. Again, a third ANOVA was used to analyze these results; the analysis

indicated significant main effect due to transfer: F(1, 2) = 187.03, p > 0.01.

Insert Figure 7 About Here

Insert Figure 8 About Here

The second measure used for data analysis was the number of program drafts made

by subjects in the course of programming; roughly speaking, this measure also

.:orresponds to the numbers of mistakes subjects made in programming. Because the

experimenter had assisted the subjects in the syntactic checking of their programs, these

mistakes were largely semantic errors, in other words, algorithmic errors. Figure 9

presents the data in terms of this measure; another three-way ANOVA was performed and

the test showed significant main effect due to transfer: F(1, 2) = 25.41, p < 0.05. Figure 9

also presents the mean per-draft time for subsequent drafts averaged across both groups

and problems. From the results, we see that this per-draft time was fairly stable from

programming in the first language to in the second. In other words, the transfer on

subsequent drafts was mainly manifested as fewer drafts rather than less time per draft.

The subjects usually attempted to fix one bug each draft, although on some occasions

some might trace down several small bugs in one pass or one big bug in several passes.

Transfer among languages 13



Thus, we can grossly identify the number of drafts with the number of semantic bugs in the

program.

Insert Figure 9 About Here

3.3. Discussion

From the quantitative results shown above, we clearly see that there is substantial

transfer from solving a problem in the first language (LISP or PROLOG) to solving it in the

second language (PROLOG or LISP) in terms of time. The time saving is consistent for

both total problem solving time and the time for finishing the first drafts of the programs.

Although in this experiment we did not have a very accurate measure of the planning time,

the pattem of the first draft times in fact seems to indicate that subjects did transfer a lot of

the algorithmic knowledge gained from programming in the first language to in the second.

We will refer this type of transfer as algorithmic transfer.

It is also conceivable that subjects might be just mechanically translating the code of

one language into the code of the other without reference to a deeper algorithmic

representation. However, this seems unlikely as our subjects usually did not access to the

their own solution in the first language. Only one subject seemed to make such

mechanical translations of her solution for Powerset problem in LISP to PROLOG and her

solution for Parse-Expression from PROLOG to LISP. She was the weakest programmer

in both LISP and PROLOG among all the subjects. She asked for print-outs of her

solutions and since she found a great deal of difficulty in these two problem we allowed

her access to her solutions in the first language; she then worked on paper to break the

solutions into components and translate them into the second language before actually

typing in the codes on the computer.

Transfer among languages 14



Another possibility of transfer other than the above two is a kind of transfer which may

occur before algorithmic planning; in other words, its level is higher than the above two

types of transfer. For this type of transfer, subjects may use rather different algorithms in

the twu tanguages and yet they may still transfer something which is the result of problem

understanding. In fact, two subjects in this experiment changed their algorithms on four

problems. In later experiments, we will again witness such cases of using different

algorithms in different languages and yet still of positive transfer; and we will refer transfer

occurring at this level as problem-level or pre-algorithmic transfer.

At the syntactic level, due to switching back and forth between programming in LISP

and in PROLOG, it appeared that subjects did get some syntactic interference between

programming in these two languages, in both coding and debugging processes. For

example, they would forget to use the correct form of list structure representation - that is,

instead of (a b c) in LISP, they might use (a, b, c). (The correct list structure representation

is [a, b, c] in PROLOG.) However, it appeared that the more attentive subjects were, the

less interference seemed to occur; when some of them were getting bored in later

problems, they were more likely to produce such syntactic interference. Overall, such

minor syntactic interference was overwhelmed by the positive transfer at the more

semantic level.

4. EXPERIMENT 2: TRANSFER BETWEEN LISP AND PROLOG --

A FURTHER STUDY

This is a further experiment on transfer between LISP and PROLOG. In the first

experiment we collected only rather gross measures of time saving in writing a program.

In this second experiment we attempted to decompose the data down into smaller units to

Transfer among languages 15



allow greater localization of the transfer. Aiso, two additional problems were incorporated

in this experiment to give further observations of transfer.

4.1. Method

Subjects. 8 subjects were involved in this experiment. They were all from CMU;

among them 3 were undergraduates and 5 were graduates. They were reimbursed for

taking part in the experiment. From the information gathered from Questionnaire, the

subject's mean GRE/SAT scores were 760; the mean self-ratings of LISP skill was 4.14,

while that for PROLOG skill was only 3.14. Thus, again as in Experiment 1, on average,

the subjects were relatively more proficient in LISP than in PROLOG.

Design. Basically, the design was the same as that in Experiment 1 (see Figure 4)

except that two additional problems were used here.

Materials. The six problems used in this experiment were Fibonacci-Function,

Powerset, Database-Search, Add-Fractions, Print-Number, and Parse-Expressions (again

in the order of actual presentation).

Procedure. Almost the same procedure as used in Experiment 1 was followed in this

experiment (see Figure 5). However, here instead of using the standard EMACS editor we

designed a special editor based on EMACS; this editor was used to time-stamp each step

of interactions between the subject and the computer. Each time when the subject begun

to edit or modify a program he was requested to turn on the timing editor; and each time

when he quitted the editing window to go to the debugging window he was asked to turn

off the timing editor (see the two shadowed boxes in Figure 5). This editor enabled us to

collect fine-grained measures of time saving and to attempt a detailed analysis of the locus

of transfer.

Transfer among languages 16



4.2. Results

Two types of measures were used in analyzing the data from this experiment -- the

time measures and the numbers of program drafts made by the subjects in programming.

For the time measures, we dissected the problem solving time for each problem into

programming (coding) time and debugging time; this could be easily done by counting the

time spent either in the editing window or in the debugging wvndow. Taking the method

from Singley & Anderson (1986) and Katz (1988), we further decomposed the

programming time into thinking time (planning time) and keystriking time (execution time).

The keystriking time was defined as follows:

Keystriking time = 1: T
over all keystrokes

Where T is either the interval between two consecutive keystrokes itself if it is less than or

equal to 2 second, or just 2 seconds if the interval is greater than 2 seconds. The thinking

time is simply the rest of the programming time; that is,

Thinking time = Programming time - Keystriking time.

In addition, we also could further decompose the thinking, keystriking and debugging

times into first-draft (initial-draft) time and rest-draft (subsequent-draft) time; this could be

done by considering the transitions made between the two windows. Moreover, a

particular component of the thinking time was used for further analysis -- that is, the time

spent on thinking before any typing, including problem reading and understanding; we will

refer this component as pre-programming time. This measure is only the first portion of

the first-draft thinking time; it largely reflects the process of problem understanding,

although some components of algorithm selecting and planning may also be involved

within it.

Transfer among languages 17



Figure 10 presents the mean times at various levels of localization -- namely, the

various levels of decomposition of the problem solving times. The data presented were

averaged over both the problems and the two groups. From the figure we can see that

substantial transfer was again exhibited both from PROLOG to LISP and from LISP to

PROLOG. For the first-draft times, the major part of transfer occurred in the first-draft

thinking and debugging; but no significant transfer manifested in the first-draft keystriking.

Insert Figure 10 about here

As in Experiment 1, transfer X language X problem (2 X 2 X 6) pattern ANOVAs were

performed on the separated data for the six individual problems. For the total problem

solving time, the main effect due to transfer was significant: F(1, 3) = 144.3, p < 0.01; for the

first-draft thinking time, the main effect due to transfer was also significant: F(1, 3) = 347.12,

p < 0.01; however, for the first-draft keystriking time, the main effect due to transfer was not

significant: F(1, 3) = 5.57, p > 0.05; for the first-draft debugging tme, the main effect due to

transfer was marginally significant: F(1, 3) = 10.21, p < 0.05. For all these time measures,

the main effects due to language were not significant. Figure 10 also presents the data for

the pre-programming time; as seen from the results, this time only occupied a small portion

of the first-draft thinking time. However, for this small portion of thinking time -- namely, the

time for problem reading and understanding -- substantial transfer was also demonstrated.

Another the same pattern ANOVA as the above was performed on the individual data of

this time measure; the results revealed significant main effect due to transfer: F(1, 3) =

21.03, p - 0.02. While the absolute times were small, in terms of relative gains these pre-

programming times showed the greatest transfer benefit with subjects only spending 23%

as much time on the second program.

Transfer among languages 18



For the rest-draft times, there was also substantial transfer manifested; this transfer

was distributed over the thinking, keystriking, and debugging times. This distribution was

related to the numbers of drafts subjects made in the course of programming; that is, the

more drafts made the more rest-draft time. Figure 11 presents the results of this measure.

Again, a three-way transfer X language X problem ANOVA was performed on the data of

this measure; the results revealed significant main effects due !o transfer: F(1, 3) = 35.33,

p < 0.01. As in Experiment 1, we also calculated the mean per-draft time for the rest drafts;

the results are also presented in Figure 11. The results indicated there was no transfer for

this per-draft time; that is, the transfer that occurred on the rest drafts was mainly the result

of the fewer total drafts.

Insert Figure 11 about here

4.3. Discussion

The first experiment demonstrated transfer between LISP and PROLOG programming;

this experiment further indicated this transfer was positive and substantial in terms of time

saving (again about 37% total time saving). Furthermore, this experiment indicated that

the effect is in the planning of the first draft and in the number of subsequent revisions that

are necessary. This is consistent with our identification of the transfer with the algorithm

design phase. Subjects took longer in designing the algorithm (the first draft time) and had

a less complete algorithm (the number of drafts) in the first language than in the second.

Also, as in Experiment 1, there were several cases of the same subjects using different

algorithms and/or styles in LISP and PROLOG programming while for the same problems.

Again, these cases demonstrated the high-level transfer as discussed in Experiment 1.

We will discuss these cases in detail in GENERAL DISCUSSION section.

Transfer among languages 19



5. EXPERIMENT 3: TRANSFER BETWEEN LISP AND PASCAL

This experiment was basically an extension of the second experiment to transfer

between LISP and PASCAL. Some of Katz's (1988) results on transfer between these two

language were replicated.

5.1. Method

Subjects. Again, 8 CMU students - 3 undergraduates and 5 graduates - were

involved in this experiment. They were reimbursed for participating in the experiment.

From the information collected in Questionnaire, the mean GRE/SAT math scores of the

subjects were 730; the mean self-ratings of LISP proficiency was 3.29, while that for

PASCAL was 3.71.

Design. The design of this experiment was almost the same as that in Experiment 2

except that PROLOG was substituted by PASCAL and that only five problems were used in

this experiment.

Materials. The five problems used in this experiment were Fibonacci-Function, Add-

Fractions, Print-Number, Powerset, and Database-Search. (Since it is very difficult to

program Parse-Expression in PASCAL, we did not include this problem in the present

experiment.)

Procedure. Almost the same as in Experiment 2, the procedure of this experiment is

also illustrated in Figure 5 where in the debugging window LISP and PASCAL (instead of

PROLOG ) programs were debugged and tested. The actual versions of the languages

used on the ANDREW system were COMMONLISP and UNIX-PASCAL.

Transfer among languages 20



5.2. Results

The same measures as in Experiment 2 were also used in the present experiment for

data analysis. The averaged times at various levels of localization are presented in Figure

12. As in the situation of transfer between LISP and PROLOG, here we also see that

transfer between LISP and PASCAL was demonstrated. Furthermore, a large portion of

transfer seemed to occur in the first draft programming and debugging; also, some transfer

was distributed among the rest drafts. Within the first-draft thing time, the pre-programming

time was again a small fraction but showed great proportionate transfer (72% saving).

Insert Figure 12 about here

As in the previous experiment, transfer X language X problem (2 X 2 X 5) pattern

ANOVAs were performed on the separated data for the five individual problems. For the

total problem solving time, the main effect due to transfer was significant: F(1, 3) = 74.04,

p < 0.01; for the first-draft thinking time, the main effect due to transfer was also significant:

F(1, 3) = 124.09, p < 0.01; however, for the first-draft keystriking time, the main effect due to

transfer was marginally significant: F(1, 3) = 8.84, p < 0.06; for the first-draft debugging

time, the main effect due to transfer was marginally significant: F(1, 3) = 20.15, p < 0.05; for

the pre-programming time, the main effect due to transfer was significant: F(1, 3) = 43. 76,

p< 0.01.

Also as in Experiment 2, we would expect that the transfer occurred on rest-drafts was

reiated to the savings of the numbers of program drafts made in transfer programming.

Figure 13 shows the results of this measure on the five individual problems. Generally, this

data pattern conformed to the transfer occurred on rest-drafts. However, as PASCAL is a

compiling language whereas LISP is interpretative (that relatively more facilitates program

Transfer among languages 21



debuggIng), there were usually more drafts of PASCAL programs than LISP programs for

the same problems. Another transfer X language X problem ANOVA was performed on the

results of this measure; the analysis revealed significant main effect due to transfer: F(1, 3)

-99.81, p < 0.01.

Insert Figure 13 about here

As mentioned earlier, Katz (1988) also investigated transfer between LISP and

PASCAL programming. The first experiment of Katz (1988) employed the same design as

we used here; but he used only two problems -- namely, Add-Fractions and Print-Number -

- as testing materials. (Actually, the problem Print-Number used in Katz's was different

from ours: he provided two procedures which could be called by the to-be-written program,

whereas in our experiment we required subjects to start from scratch.) His results also

demonstrated comparable transfer between in programming in these two languages.

6. GENERAL DISCUSSION

In this section, we will present some further discussions on the results from the three

experiments; especially, we will propose that transfer across programming language may

occur on three different levels. Furthermore, we will offer some speculations on the nature

of program representation involved in programming where transfer would exhibit.

6.1. Three Levels of Transfer In Programming

In explaining knowledge transfer, the theory of identical elements had been proposed

very early in the century ( Thorndike & Woodworth, 1901). Basically, the theory postulates

that it is the common elements shared by two two domains of knowledge that enables the

Transfer among languages 22



knowledge acquired in one domain to transfer to the other. In our earlier analyses on the

similarities and differences among PASCAL, LISP, and PROLOG, we have seen that there

are indeed a number of commonalities shared by the three languages. Therefore, in the

light of the identical-element theory, it is not surprising that in the three experiments we

witnessed a great deal of transfer between PASCAL and LISP and between LISP and

PROLOG.

However, as noted earlier, although sometimes the programs written in different

languages by the same subjects appeared to be very different in algorithms, data

structu:es, and programming styles, there was still quite a lot transfer manifested in

programming from one language to another. For instance, in Experiment 3 all the subjects

used different algorithms to implement Database-Search problem (see Figure 3) in the two

languages; namely, all used recursive solutions in LISP and iterative solutions in PASCAL.

Nevertheless, on this problem the subjects still displayed a 27% time savings. A transfer X

language ANOVA (2 X 2) was performed on the data of total problem solving time for this

problem; the analysis revealed significant main effect due to transfer: F(1, 3) = 43.10, p <

0.01.

To account for the above results, we propose that there are three levels of transfer

across programming in different languages. These three levels may be called the

syntactic level, the algorithmic level, and the problem level. The syntactic level is the

lowest level and played a relatively minor role, positive or negative, in our transfer results.

However, there was some transfer at this level. We have already noted the int,-rference

between list conventions in PROLOG and LISP. Subjects also transferred variable names

and function names from one language to another; Katz (1988) also documents a number

of instances of transfer at this level.

The algorithmic level refers to the knowledge that is semi-language-dependent in that

Transfer among languages 23



the particular algorithm chosen may be just appropriate for only certain languages (e.g.,

choosing recursive algorithms for LISP and PROLOG whereas iterative algorithms for

PASCAL). However, we suspect much of our transfer was at this level. Most of the

occasions subjects used highly similar algorithms in the two languages; that is, subjects

copied algorithms (not code) from one language to another. This is why the transfer was

mainly located in the first-draft planning time and number of drafts. Subjects were able to

use the algorithm they had perfected in the first language to cut down the planning in the

second language, and, since they already had a worked out algorithm in one language,

there was less need for revision.

However, as we noted all transfer could not be at the algorithmic level since

sometimes transfer was displayed even when a different algorithm was used in the two

languages. We believe this involves understanding the problem itself and the knowledge

,.-ponsible for this transfer is language-independent but problem-related. The dramatic

decreases in pre-programming time are one manifestation of transfer at this problem level.

Clearly, subjects had to spend little time rereading the problem statement. However,

transfer at this level goes beyond reading the problem statement. For instance, in the

Database-Search problem (Figure 3) subjects would realize in the first program that they

would have to have a system that represented multiple books by the same author but not

multiple authors of the same book. This problem constraint was important to designing the

algorithm for LISP or PASCAL; and this constraint could be transferred from one language

and algorithm to a different language and algorithm.

6.2. Declarative versus Procedural Transfer

ACT' is a general theory of human cognition embedded in a computer simulation

model (Anderson, 1983). The theory proposes that there are generally two kinds of

knowledge involved in human cognitive activities -- namely, declarative and procedural

Transfer among languages 24

K



knowledge. The theory has been successful in explaining a large set of empirical data on

memory processes, problem solving, and learning. Singley & Anderson (1989) have

recently extended the theory to encompass knowledge transfer as well. Essentially, the

ACT* explanation of transfer is an elaboration of the identical-elements theory; in fact, it

instantiates the common elements shared by two skills in the form of production rules -- a

general form of representing procedural knowledge. This explanation of transfer has been

successfully applied to transfer in the domain of computer-based text-editing (Singley &

Anderson, 1985; 1987; 1989).

However, since our subjects in this study were already relatively competent

programmers in the three languages, it is unlikely that the locus of transfer can be in

procedural form of programming skill. Thus, the explanation of transfer in terms of identical

productions does not seem to be applicable here. Rather, the knowledge transferred

seems declarative. Subjects are transferring their mental representation of one solution to

the next solution. This hypothesis is consistent with the transfer being largely in the initial

draft time and number of revisions but not in the execution time.

7. SUMMARY

The following conclusions concerning knowledge transfer across programming in

different languages can be drawn from this study:

1. There was substantial transfer between LISP and PROLOG and between LISP and

PASCAL. We hypothesize that thir can be generalized to transfer between any two

programming languages as there usually would be some commonalities shared by them;

however, the amount of transfer might be related to the closeness of the two languages.

Transfer among languages 25



2. The positive transfer among programming languages was mainly localized in the

amount of time for constructing an initial draft of program and the number of revisions

required for finalizing that draft.

3. We propose that there are three levels of transfer between programming in two

different languages -- namely, the syntactic, algorithmic, and problem levels. It is also

proposed that most of the transfer we observed occurred at the algorithmic and problem

levels.

Acknowledgement. This research was supported by grand MDA 90 38K K0190 from

ARI. We are grateful to Drs. Herbert Simon and Kurt VanLehn, and to many graduate

students, in the Department of Psychology at CMU, for their comments on various portions

of this work.

Transfer among languages 26



REFERENCES

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge: Harvard University

Press.

Anderson, J. R., Corbett, A., Finchman, J., Hoffman, D., & Pelletier, R. (in preparation).

General Principles for an intelligent tutoring architecture.

Katz, 1. R. (1988). Transfer of Knowledge in Programming. Ph.D. Dissertation, Department

of Psychology, Carnegie Mellon University, Pittsburgh.

Keane, M. T. (1988). Analogical Problem Solving. New York: John Wiley & Sons.

Kessler, C. M. & Anderson, J. R. (1986). Learning flow of control: recursive and iterative

procedures. Human-Computer Interaction, 2, 135-166.

Kotovsky, K. & Fallside, D. (1988). Representation and Transfer in Problem Solving. In

Klahr, D., and Kotovsky, K. (Eds.), Complex Information Processing: The Contributions

of Herbert Simon. Hillsdale, N. J.: Erlbaum.

Lewis, C., Carroll, J., & Bever, T. (1985). An exploratory study of problem formulation in

PROLOG, LISP and PASCAL. ISM Technical Report.

Mandinach, E. B. and Linn, M. C. (1987). Cognitive consequences of programming:

Achievements of experienced and talented programmers. Journal of Educational

Computing Research, Vol. 3, pp. 53-57.

Scholtz, J. and Wiedenbeck, S. (1989). Learning second and subsequent programming

languages: a problem of transfer. Technical Report #80 of Department of Computer

Science and Engineering. University of Nebraska.

Simon, H. A., & Hayes, J. R. (1976). The understanding process: problem isomorphs. In

Model of Thought. Vol. I. Cambridge, MA: Harvard University Press.

Singley, M. K., & Anderson, J. R. (1985). The transfer of text-editing skill. International

Journal of Man-Machine Studies, Vol. 22, pp. 403-423.

Singley, M. K., & Anderson, J. R. (1987). A keystroke analysis of learning and transfer in text

editing. Human-Computer Interaction, Vol. 3, pp. 223-274.

Singley, M.K., & Anderson, J. R. (1989). The Transfer of Cognitive Skill Cambridge, MA:

Transfer among languages 27



Harvard University Press.

Smith, S. B. (1986). An Analysis of Transfer between Tower of Hanoi Isomorphs. Ph.D.

Dissertation, Department of Psychology, Carnegie Mellon University.

Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental

function upon the efficiency of the other function. Psychological Review, Vol. 8, pp.

247-261.

Transfer among languages 28



Figure 1. A comparsion of PROLOG, LISP, and PASCAL -- major commonalities and

differences among them.

PROLOG LISP PASCAL

Control-flow
Difference Matching and Sequential execution +

back-tracking. Function calling. function/procedure calling.

Similarity Recursion can be Recursion as the basic ITERATION as the major type
implemented by flow of control. of repetition control-flow,
backtracking. but RECURSION can

also be implemented.

Constitutents:
Difference Predicates. Functions. Statements +

Procedures/Functions.
Similarity f(NI, N2, .o*, Nn, Result). (f Ni N2 -,* Nn).

List processing: Sets, arrays, records, and
Similarity Contructive, can be nested; Contructive, can be nested; files of records;

Head-Tail recursion; car-cdr recursion; they can be used to
[XIY], [X, YJ. (cons X Y), (list X Y); implement list structures,
length(X). (length X). but the entities in one list

must be of the same type.

Difference Denoted as [a, b, c d]; Denoted as (a b c d);

fewer built-in predicates. more built-in functions.

e.g.:Allowed: x=(R, G, Blue); e.g..
Allowed: xl=(R, G, (R, G Allowed: x:=[R, G, Blue];Allowed: xl-(R,G, (R,G)). No allowed: xl:=[R, G, [R, G]l.

list x: (nth x) array x: x[n]
list x: (cdr x) record x: xA (next)

list x, y: (union x) set x, y: x + y

list x, y: (intersect x) set x, y: x * y

Arithmetic
expression:
Similarity Procedural evaluation. Procedural evaluation. Procedural evaluation.

Difference Infix representation. Prefix representation. Infix representation.



Figure 2. First example of programming problems for illustrating the similarities and

differences of the three languages -- programs in PASCAL, LISP, and PROLOG for

evaluating the Fibonacci function.

The Fibonacci function is defined as follows:

f(n)=1, if n=O0;
= , if n = 1;

=f(n-I) + f(n-2), if n> 1.

Model PASCAL programs: Model LISP programs: Model PROLOG programs:

Recursive solution -- Recursive solution -- Recursive solution --

function f(n: integer): integer; (defun f(n) f(N, 1):- =l
begin (if (<= n 1) 1 f(N, F):-N1is N-1,

if n<= I then f:=1 (+ (f (- n 1)) (f (-n 2))) N2 is N-2,
else f :=f(n-1)+f(n-2) )f(N1, Fl),

end; )f(N2, F2),
F is F1 +F2.

Iterative solution -- Iterative solution -- Iterative solution --

function f(n: integer): integer; (defun f(n) fN )N<1
begin (if (<= n 1) 1 f(N, R) -N, 1,;,1 )

if n <= 1 then f :=1 (do ((fi1 1 (+fl1 f2)) f(N, R) -F(, 1,, F).
else (f2 1 111) f(,I< , F

begin f2 1 ( + i f )) T is F1 + F2,
for~~n 112tondo)I is 1+ 1,

bei:= tn do f(N, 11, T, F1, F).
begin f ; f(N, N, F1, F2, Fl).
fl:=flf2;

Q2 -- f
end;

end;
end;



Figure 3. Second example of programming problems for illustrating the similarities and
differences of the three languages -- programs in PASCAL, LISP and PROLOG for

counting the number of books by a certain author in a database of books.

Suppose there is the following database:
Anderson, The Architecture of Cognitive, 1983.

Anderson, Cognitive Psychology, 1985.

MeClelland, Parallel Distributed Processing, 1986.
Simon, The Sciences of the Artificial, 1969.
Simon, Human Problem Solving, 1972.
Simon, Protocal Analysis, 1987.

Write programs in PASCAL, LISP and PROLOG to count the number of books by a
given author.

Model PASCAL programs: Model LISP programs: Model PROLOG programs:
Iterative solution -- Recursive solution -- Declarative solution:

(Using association list)
type book(anderson, arc, 1983).

string=array[1 ..10] of char; (setq database book(anderson, cog, 1983).
booktype=record '((anderson arc 1983) book(mccleland, pdp, 1986).

name: string; (anderson cog 1985) book(simon, art, 1969).
title: string; (mccleland pdp 1986) book(simon, hps, 1972).
year: integer (simon art 1969) book(simon, pro, 1987).

end; (simon hps 1972)
var (simon pro 1987))) books by(Author, L):-

database: file of booktype; setof(X,
(defun count-books (author) book(Author, X, J, L).

procedure (count-help no of books(Author, N):-
count(author: string); author database)) booksby(Author, L),

var length(L, N).
a_book: book -type; (defun count-help (auth db)
n: integer; (cond

begin ((null db) 0)
n :=0; (t (+ (if (eq auth
reset(database); (caar db)) 1 0)
while not eof(database) do (count-help auth

begin (odr db))))))
read(database, abook);
if abook.name=author NOTE: in some COMMONLISP
then n:=n+l versions, this function can be

end; written more compactedly:
wditeln('No. of books:', n) (defun count -books (author

end; (count author database
lest #'eq :key #'car))



Figure 4. The design of the experiments - transfer between LISP and PROLOG as for

Experiment 1 and 2 and transfer between LISP and PASCAL as for Experiment 3.

Prob-1 Prob-2 Prob-3 Prob-4 Prob-5* Prob-6*

Group-i LISP-->PROLOG** P-->L L-->P P-->L L-->P P-->L

Group-2 PROLOG-->LISP** L-->P P-->L L-->P P-->L L-->P

NOTE *: This figure presents the design which was common to the three experiments.
However, 4 problems were used in Experiment 1; 6 in Experiment 2; and 5

in Experiment 3.
**" Instead of PROLOG, it was PASCAL in Experiment 3.



Figure 5. The experimental procedure used in the experiments -- transfer between LISP and

PROLOG as for Experintent 1 and 2 and transfer between LISP and PASCAL as for

Experiment 3.

( Start from Problem 1

Enter Emacs environment

Tunon the Timing-editor (~)

Edit the program

Quit the Timing-editor (<Ctr-l>)* I

Save the program to a file

Debugging window:
LISP, PROLOG, or PASCAL debugging

modify,,
" If the program does not work

NOTE *: This figure presents the procedure which was common to all the three
experiments. However, the timing-editor (as shown in the two shadowed

boxes) was only used in Experiment 2 and 3; in Experiment 1, standard
EMACS editor was used.



Figure 6. The mean problem solving time by two groups of subjects in Experimen 1,

averaged across subjects within groups and across two groups and four problems.

Subjects in Group 1 Subjects in Group 2

60 60

so -la- Groupl -Lisp so.. -0&~ Group2-Lisp
40• 40 L

- E 30i.I30-
30 ,

10- 10-

1 2 3 4 1 2 3 4

L->P P->L L->P P->L P->L L->P P->L L->P

Problem No. and Problem No. and
Transfer Direction Transfer Direction

Mean Total Problem Solving Time (in minutes)
Across Two Groups and Four problems

First Program Second Program

Lisp programming 26.7 13.4

Prolog programming 24.4 18.8



Figure 7. The mean first-draft time by two groups of subjects in Experiment 1,

averaged across subjects within group and across two groups and four problems.

Subjects in Group I Subjects in Group 2

30 30
' ro1-Uspm

25 I- Groupl -ProIogI 25 -w Group2-isp I

20- 20-

15-1

10o- 10

01
1 2 3 4 1 2 3 4

L->P P->L L->P P->L P->L L->P P->L L->P

Problem No. and Problem No. and
Transfer Direction Transfer Direction

Mean First Draft Time (in minutes) Averaged across
Two Groups and Four Problems

First Program Second Program

Lisp programming 14.4 5.7

Prolog programming 13.5 9.4



Figure 8. The mean rest-darft time, as the difference between the total time and the

first-draft time, by two groups of subjects in Experiment 1, averaged across

subjects within group and across two groups and four problems.

Subjects in Group 1 Subjects in Group 2

30 30

25 mr 5Gop-s
p,- u-Usp -

Grl Prolog2

15 15

10 10

5 5

0 I I I 0 I I

1 2 3 4 1 2 3 4
L->P P->L L->P P->L P->L L->P P->L L->P

Problem No. and Problem No. and
Transfer Direction Transfer Direction

Mean First Draft Time (in minutes) Averaged across
Two Groups and Fou Problems

First Program Second Program

Lisp programming 12.3 7.7

Prolog programming 13.5 9.4



Figure 9. Results of Experiment 1 on transfer between programming in LISP and in

PROLOG -- No. of drafts, roughly corresponding to semantic mistakes made in programmin

Subjects in Group 1. Subjects in Group 2.

10, 10

a- _# Groupi -Prolog 8- .41. Group2-Prolog

V" 6- 6-

4- 04
o zz

2- 2

1 2 3 4 0 1 2 3 4
L->P P->L L->P P->L P->L L->P P->L L->P

Problem No. and Problem No. and
Transfer Direction Transfer Direction

Mean Number of Drafts Averaged
Across Two Groups and Four problems

First Program Second Program

Lisp programming 3.20

Prolog programming 4.58 3.44

Mean Per-Draft Time (in minutes) for Rest Drafts
Averaged Across Two Groups and Four problems

First Program Second Program

Lisp programming 3 .48

Prolog programming 3.77 3.85



Figure 10. Results of Experiment 2 -- time measures (in seconds) as various levels of

localization in transfer between programming in LISP and in PROLOG.

First draft Pre-programming time

6-j7 551

288, 15; .F47 II

Tiking time3

33 .... 11Programming85 4

781 558 First draft

-2 I. -12

187315211 2831 273
S. Keystriking time 309 253091

Problem-solving 426 324
Rest drafts

452 351 J7  [
1163 877 - -4I7
1426 758 143 1

First draft

Debugging 155 107
t-i-e

10 38 319148 
1061

553 237Rest drafts

227 212J

405 1311
First Second- -

program program

The data presented here are averaged across
LISP both pro, lems and the two groups. The diagonals

represent the conditions as either
PROLOG LISP --> PROLOG or PROLOG --> LISP.



Figure 11. Results of Experiment 2 on transfer between programming in LISP and in

PROLOG -- No. of drafts, roughly corresponding to semantic mistakes made in programmin

Subjects in Group 1. Subjects in Group 2.

10 10

8- G l-Piog- 8- 4 G2-Lisp-#
8 4 G GI-Prolog-# 2Pog-

6-16-

04 - 4

zz
2 2

0- a I I I I 0 -

1 2 3 4 5 6 1 2 3 4 5 6
L->P L->P P->L L->P P->L P->L P->LP-LP->L P->L L-P L->PP >L->P

Problem No. and Problem No and
Transfer Direction Transfer Direction

Mean Per-Draft Time (in seconds) for Rest Drafts

Averaged Across Two Groups and Four problems

Thinking Time Keystroking Time

First Program Second Program First Program Second Program
LISP

19 22 41 31

PROLOG
18 26 30 38



Figure 12. Results of Experiment 3 - time measures (in seconds) as various levels of

localization in transfer between programming in PASCAL and in LISP.

First draft Pre-progranuiing time

"wnn, g fe v 494, 296ml 
1

1471 741Keystriking rr 452-46

12311 106 Debugging -I 26 I,.160
First draft

7 T

36182 145

Rest raft

15 81 0 7

First Second

program program

The data presented here are averaged acrossPASCAL rboth problems and the two groups. The diagonasJ represent the conditions as either

LISP / PASCAL -- > LISP or LISP -- > PASCAL.



Figure 13. Results of Experiment 3 on transfer between programming in PASCAL and in

LISP - No. of drafts, roughly corresponding to semantic mistakes made in programming.

Subjects in Group 1. Subjects in Group 2.

12- [-0-Gru]-]s 12- - Group2-Pascal-- Group -0 -Lip oup2-Lisp ]

10 100

6o 

6 E6
6 4- 4

zI
2- 2

1 2 3 4 5 1 2 3 4 5
P->L L->P P->L L->P P->L L->P P->L L->P P->L L->P

Problem No. and Problem No. and
Transfer Direction Transfer Direction

Mean Per-Draft Time (in seconds) for Rest Drafts

Averaged Across Two Groups and Four problems

Thinking Time Keystroking Time

First Program Second Program First Program Second Program

PASCAL 22.0 25.0 43.0 56.0

LISP 73.0 20.0 50.0 53.0


